
19

CHAPTER 3

METHODOLOGY

3.1 Overview

A project management methodology is a structured framework that includes

tools, techniques, guidelines, and principles designed to guide the planning,

execution, and completion of a project. Its primary goal is to ensure that the

project is delivered efficiently, meeting the specified objectives within the

constraints of time, cost, and scope.

Essentially, a methodology serves as a repeatable process that outlines how

projects should be managed. It includes well-defined methods, practices,

procedures, processes, and rules that help streamline project workflows. These

elements provide a clear path for managing tasks, assigning responsibilities,

monitoring progress, and achieving milestones.

A project management methodology also defines activities, deliverables, and

timelines enabling teams to stay focused and coordinated throughout the project

lifecycle. Importantly, it is flexible and can be customized to align with the

specific goals, size, and nature of the project or the industry in which it operates.

This adaptability helps ensure better results, improved collaboration, and

consistent project success.

3.2 Possible Methodologies for this Project

When planning and executing a project like GyanPile, selecting an appropriate

development methodology is critical to achieving success. The methodology

determines how tasks are structured, how progress is tracked, and how feedback

is incorporated. Below are four commonly used software development

methodologies with their respective strengths and limitations:

20

a. Waterfall Model

The Waterfall model is a step-by-step approach where each phase flows into the

next like a waterfall. It includes stages like requirement analysis, design,

development, testing, deployment, and maintenance. Once a stage is completed, it

cannot be revisited easily. This model is simple and easy to understand, making it

suitable for projects with well-defined requirements. It emphasizes documentation

at every phase to ensure clarity and traceability.

Advantages:

 Clear structure and documentation at every stage.

 Progress is measurable as each phase has specific deliverables.

 Ideal for projects with fixed scope and stable requirements.

 Clear project milestones help in tracking progress.

Disadvantages:

 Poor adaptability to changes once development has started.

 Late feedback from users can result in unmet expectations.

 Testing is postponed until after development, increasing risk of undetected

errors.

 High risk and uncertainty, especially in large projects.

b. Prototype Model

The Prototype model creates an early version of the software that helps

stakeholders visualize the final product. This prototype is not a complete system

but a sample version that shows how the final software might look and work. This

model encourages continuous feedback and refinement before actual development

begins.

Advantages:

 Better requirement understanding through user interaction.

 Early detection of design or functionality flaws.

21

 Improves user satisfaction as they’re part of the development loop.

 Improves communication between users and developers.

Disadvantages:

 Development of multiple prototypes can consume time and cost.

 Risk of misinterpreting the prototype as the final system.

 Frequent changes can increase complexity.

 Increased cost if not managed properly.

d. Agile Model

The Agile model is a modern, team-based approach that promotes adaptive

planning, early delivery, and continuous improvement. It is flexible, team-based,

and focuses on delivering working software quickly. Work is broken into small

units called sprints that deliver a usable feature in each cycle. Agile encourages

frequent collaboration between developers, testers, and customers to ensure the

product meets real needs. Changes can be incorporated easily at any stage,

allowing the project to adapt to feedback and evolving requirements.

Advantages:

 Encourages active user involvement and frequent feedback.

 Enhances collaboration and transparency among developers and

stakeholders.

 Responds well to changing requirements.

 Continuous testing and integration improves product quality.

Disadvantages:

 Requires disciplined and experienced teams.

 Documentation may be minimal.

 Difficult to predict final cost and timeline in early stages.

 Difficult to predict cost, time, and resources due to frequent changes.

22

e. Spiral Model:

The Spiral Model is a Software Development Life Cycle (SDLC) model that

provides a systematic and iterative approach to software development. In its

diagrammatic representation, looks like a spiral with many loops. The exact

number of loops of the spiral is unknown and can vary from project to project.

Each loop of the spiral is called a phase of the software development process.

Figure 5: Spiral Model

The Spiral Model is a risk-driven model, meaning that the focus is on

managing risk through multiple iterations of the software development

process. It consists of the following phases:

a. Objectives Defined: In first phase of the spiral model, we clarify what

the project aims to achieve, including functional and non-functional

requirements.

b. Risk Analysis: In the risk analysis phase, the risks associated with the

project are identified and evaluated.

c. Engineering: In the engineering phase, the software is developed based

on the requirements gathered in the previous iteration.

d. Evaluation: In the evaluation phase, the software is evaluated to

determine if it meets the customer’s requirements and if it is of high

quality.

23

e. Planning: The next iteration of the spiral begins with a new planning

phase, based on the results of the evaluation.

The Spiral Model is often used for complex and large software

development projects, as it allows for a more flexible and adaptable

approach to software development.

3.2 Reason to Select Spiral Methodology

We selected the Spiral Model for developing GyanPile, our real-time chat feature

for the ourDiscuss forum, because it is highly suitable for large-scale, complex,

and evolving projects. GyanPile includes critical elements like real-time

messaging, group chat, multimedia sharing, and future features like voice and

video calls—all of which demand thorough planning, regular feedback, and

continuous improvements.

The Spiral Model supports development in repeated cycles or phases, allowing us

to handle technical challenges such as scalability, fast message delivery, and

secure communication. With each cycle, we can identify potential issues early,

reduce risks, and make informed decisions. The model's flexibility also allows us

to add new features based on user feedback, making GyanPile a dynamic,

modern, and usercentered platform.

Characteristics of the Spiral Model

 Developed in multiple repetitive phases or spirals.

 Early identification and management of risks.

 Highly flexible in accommodating changes during development.

 Supports prototyping for gathering user feedback.

 Emphasizes regular communication with users.

 Suitable for large and complex projects.

 Ensures proper documentation and planning at each stage.

24

 Advantages of the Spiral Model

 a. Risk Handling:

Ideal for projects with uncertain or high risks. Each iteration involves risk

analysis and strategies to mitigate potential issues.

b. Suitable for Large Projects:

Because of its iterative nature and detailed planning, it works best for projects

with broad scope and complexity, like GyanPile.

c. Flexibility in Requirements:

Changes in user needs or functionality can be smoothly incorporated during the

development cycles.

d. Customer Satisfaction:

Users get to interact with early versions of the system, giving feedback that helps

align the final product with actual needs.

e. Improved Quality:

Frequent iterations and continuous refinement help catch defects early, leading to

higher quality software.

Disadvantages of the Spiral Model

a. Complexity:

The model can be complex to manage and requires careful tracking of all cycles

and components.

 b. Costly:

Not suitable for small projects due to the high cost and resources needed in each

development phase.

 c. Dependency on Risk Analysis:

Success relies heavily on accurate risk identification and expert risk management

throughout the project.

25

3.3 Reason Not to Select Other Available Methodologies

a. Waterfall Methodology

 Lack of Flexibility: The Waterfall model is rigid and does not allow changes

once a phase is completed, making it unsuitable for evolving or unclear

requirements.

 Late Feedback: Since user testing and product demonstration occur only at

the end, there is little opportunity to make improvements based on user input

during development.

 Limited Collaboration: Each stage is completed in isolation, which reduces

collaboration and can cause misalignment between development and actual

user needs.

 Longer Time to Market: Because the entire product is delivered only after all

phases are complete, it delays user access and feedback.

 Risk of Misunderstanding Requirements: If initial requirements are

misunderstood, the error carries forward through all phases, potentially

causing major rework.

 No Room for Innovation: The fixed structure discourages creativity or

adaptation mid-development, which is a drawback for dynamic and user-

focused projects.

b. Agile Methodology

 Complex Implementation: Agile requires high team maturity and excellent

communication. Without it, the project can become chaotic.

 High Involvement Needed: Agile depends on constant feedback from

stakeholders, which may not always be available in academic or time-

constrained projects.

 Overhead of Frequent Meetings: Regular sprint planning, reviews, and

retrospectives can consume time and reduce development focus.

 May Lack Final Vision: The iterative nature can sometimes lead to a product

that continuously evolves without a clear end-state.

26

 Difficulty in Large Teams: Managing Agile with large, distributed teams can

be difficult without proper tools and coordination practices.

 Documentation is Often Minimal: While Agile values working software

over documentation, this can create issues when detailed documentation is

required later.

c. Prototyping Methodology

 Time-Consuming for Complex Systems: Building realistic prototypes for

feature-rich applications like GyanPile can take a lot of time, delaying actual

development.

 May Create Unrealistic Expectations: Users may mistake the prototype for

the final product, leading to disappointment if features are later removed or

changed.

 Frequent Feedback Loops Delay Progress: Continual changes based on user

input can slow down final delivery.

 Increased Cost: More time and resources spent on prototype iterations can

lead to budget overruns.

 Not Suitable for Final Deployment: Prototypes are usually throwaway

models and cannot be reused for the final system, resulting in duplicated

effort.

 Lack of Systematic Planning: Rapid prototyping often skips proper

requirement analysis and planning, which can affect long-term maintainability.

